Comprei este kit de gerador de funções com o CI XR2206 faz um tempo e fiz um vídeo da montagem e dos testes:
É um kit de baixo custo e algumas coisas foram tiradas do esquema tradicional do datasheet (principalmente o ajuste de distorção e o de simetria). Pelo preço está até que bom os resultados.
Recomendo para quem quer começar a aprender a soldar e brincar com eletrônica.
Mais um conserto de TV, desta vez uma LG 32LN540B que não ligava. Segue o vídeo:
O defeito era na fonte de alimentação, com o resistor de 0,25 Ohms de proteção de corrente, um resistor SMD de 220 Ohms e um Capacitor de 330 pF x 1kV abertos. O fusível também abriu e teve que ser trocado. Por segurança também troquei o CI da fonte (SSC1S311A).
Uma aparelhinho que comprei pra completar uma compra e se mostrou até que útil. Segue o vídeo do teste do testador (!!!!) de optoacopladores:
O testador de optoacoplador é bem pequeno, o circuito é formado por um microcontrolador de 6 pinos e um CI carregador de bateria:
Além de testar optoacopladores ele tem um LED branco que pode servir como lanterna, embora a utilidade seja discutível. A bateria fica embaixo da placa e é de 100 mAh. Existe outro testador a venda no Aliexpress que usa só um LM555 e não tem bateria, tendo que ser alimentado por uma porta USB.
No post anterior eu mostrei o tuner Aiko DT-3000 que encontrei no ferro-velho. Junto com ele eu comprei também um equalizador Tarkus TE0205. Trata-se de um equipamento adicional para o system 3000 da Aiko, embora não oficial. Aparentemente é um aparelho raro e acabei fazendo um vídeo dele:
Novamente sem problemas no aparelho, apenas o cabo de alimentação havia sido cortado. Coloquei um cabo novo e o aparelho funcionou normalmente. Por dentro tem só dois amplificadores operacionais duplos 4558 e 5 circuitos de gyrator (simulando indutores) para cada banda de equalização, com transistores:
Encontrei este tuner Aiko modelo DT-3000 no ferro-velho e resolvi dar uma chance pra tentar recuperar. Acabou que era só o cabo de alimentação cortado. Coloquei um novo e tudo estava funcionando normalmente. Segue o vídeo:
O tuner por dentro:
Para um projeto de 1980 até que ele é bem moderno. São dois CIs nessa placa, um HA11211, receptor AM/FM e um HA1196, decodificador de stereo. No painel tem mais dois CIs:
O LB1405 é o medidor de nível de sinal, acionando o bargraph de LED. Já o T1400-E é o frequencímetro para o rádio.
Há um tempo eu tinha um testador de telas LCD T-60S, mas tive que me desfazer dele. Agora consegui este T-80S, uma versão atualizada do mesmo testador. Segue o vídeo:
Existe também a versão T-100S com mais 20 possibilidades de testes, mas são para resoluções menos usadas. Analisando o preço vs utilidade acabei optando pelo T-80S. Aqui cabe uma explicação que faltou no meu vídeo: O T-80S tem as duas últimas opções (79 e 80) para testar telas 4k. Embora ele realmente possa testar essas resoluções é necessário uma placa extra ligada a ele e que não tenho. Sozinho ele não testa telas 4k.
Estava lá eu fazendo um projetinho open source com as mesmas funções do Flipper Zero e surgiu uma ideia que acabou virando um outro projeto. Segue o vídeo contando mais detalhes:
O Chaos Papagali é uma atualização do circuito de grilo eletrônico das antigas revistas. Basicamente é uma plaquinha que você esconde e ela faz barulho aleatoriamente. No caso deste meu ele vibra imitando um celular. O projeto todo e mais detalhes estão no meu GitHub. O projeto todo tomou um certo tempo e deu muita dor de cabeça pra concluir, mas está pronto. Agora posso voltar ao outro projeto...
Comprei esta placa de aquecimento para soldagem SMD para um projeto que estou fazendo (em breve deve aparecer aqui). Aproveitei e fiz um vídeo da desmontagem:
Como mostrado no vídeo o aparelho apresentou o problema de descolar o sensor de temperatura da placa e tive que dar um jeito de colocar ele em contato novamente. Fiz uma montagem com ela até agora e funcionou, mas os problemas relatados no vídeo podem levar a mais falhas no futuro. Não sei se continuarei a usar esta placa.
A montagem geral é bem complexa, com várias placas e muitos parafusos:
Só uma das placas realmente tem montagem de um circuito:
O CI menor no canto inferior direito parece ser o negociador de tensão USB C. Acima dele tem um regulador de tensão não identificado de 6 pinos. O microcontrolador é um CMS8S5897 (núcleo 8051). para o controle da resistência da placa de aquecimento tem o MOSFET IRLR8726 (30V x 86A).
Daí eu recebi este rádio para avaliação no canal. Segue o resultado no vídeo:
É um rádio de emergência um pouco maior e com quase as mesmas funções do outro que avaliei recentemente por aqui. A diferença é que este não tem luz de leitura e a sintonia e controles são digitais. A placa solar também é maior neste aqui. Por dentro ele tem duas placas:
A placa menor é a de alimentação, que é assim:
Aí, da esquerda pra direita, temos os diodos da ponte retificadora do gerador manual. Este gerador usa o mesmo conjunto de engrenagens do rádio anterior. Seguindo na placa o CI de 5 pinos é um protetor de baterias de Lítio DW03. O circuito de power bank está ali em cima, no CI de 8 pinos IP5306 que também controla a laterna.
Já a placa do rádio é assim:
O CI menor é um TC8002D, mesmo amplificador de áudio do outro rádio. O microcontrolador é um SC92F7446 (com núcleo 8051). Já o rádio é um AKC6951, que tem capacidade para mais bandas mas neste caso só é usado para AM e FM.
Comprei este dock de HD da B-Max para tentar ler dois HDs IDE que tinha aqui. Um era de 4,5GB e outro de 80GB. Não consegui ler, talvez estejam com problemas, mas gravei um vídeo sobre o que tem dentro do dock:
Por dentro o dock tem apenas uma placa que é assim por baixo:
Aí só tem os conectores IDE, SATA e parte dos leitor de cartão. O conector vermelho é para a alimentação de HDs Full IDE (3.5"). Do outro lado tem os circuitos mesmo:
O circuito é formado por um HUB USB (GL850G - Canto direito em cima), um leitor de cartões USB MA8168A e um regulador de tensão MT2499A. No centro tem um conversor USB para SATA/IDE sem identificação de código. Como o HUB é USB 2.0 a leitura e escrita são bem lentas.
Recebi este radinho para review recentemente e fiz o tradicional vídeo lá no canal:
É um rádio AM/FM/WB com funções extras de lanterna de leitura, lanterna e sirene. A alimentação pode ser feita por três pilhas AAA (palito), bateria 18650 interna, Luz solar e gerador manual. Falando em gerador, ele tem três fios e uma redução mecânica, assim:
Ao abrir o rádio vemos a placa única, com vários conectores para as diversas conexões (bateria, alto falante, lanterna, etc) e o núcleo de ferrite da antena de AM. Apenas os fios do gerador e da antena são soldados na placa:
Soltando a placa e virando vemos o circuito realmente:
A fileira de seis diodos formam a ponte retificadora do gerador. Embaixo dela tem um CI carregador de baterias SY7656. O amplificador de áudio é um TC8002D de até 3W de potência. O CI em encapsulamento TO92 é um HT7133A, regulador de tensão com entrada alta. Tem mais um CI de 8 pinos em cima, a direita, mas não está identificado. Acredito que seja um regulador de tensão ou o circuito da sirene.
O rádio mesmo, pelo circuito, provavelmente é um SI4825. O cristal de 32768 e as conexões parecem indicar que é ele mesmo. A sintonia é feita por um potenciômetro.
Pra renovar os testes de power banks e outras coisas que tenham USB peguei este testador USB C e fiz o tradicional vídeo de review e demontagem:
É um testador de 4 a 30V de entrada e corrente de até 12 A. Não cheguei a testar o máximo de tensão e corrente, mas acho este valor de 12 A bem exagerado. Por dentro ele é assim:
O microcontrolador, no centro da placa, é um Puya F002AF15 (ARM). O CI de 5 pinos está marcado como CHJ65 e acredito que seja um amplificador operacional para a medida da corrente, que é feita no resistor de 20 mR ali em cima dele.
Daí minha irmã encontrou este rádio num brechó e pediu pra eu dar uma olhada no funcionamento. Segue o vídeo dos testes:
O rádio é um típico rabo quente de 5 válvulas. O esquema encontrei na revista Monitor de Rádio e TV número 142 de Janeiro de 1960:
Ao contrário do que falo no vídeo as válvulas não tem tensão de filamento de 6,3V (obrigado ao Sturaro por apontar o correto). Falha minha, válvulas não são muito a minha praia.
Outra coisa que chamou atenção e comentários no vídeo foi a Vloss do capacitor da fonte em 15%. Está alta? Então, isso é informado no manual do testador que deu origem ao usado no vídeo (aquele com ATMEGA). Quando medido no circuito a Vloss pode dar alta por causa do que estiver ligado ao capacitor. O correto é medir fora do circuito.
Este rádio era vendido em kit na época e tinha um erro na montagem na chave de onda. Aparentemente ele nunca funcionou a faixa de ondas curtas. Outro problema é o controle de volume que não zera. Este não consertei por precisar devolver o rádio. Sim, o vídeo foi gravado meio que as pressas e não ficou tão bom quanto eu queria.
O rádio fora da caixa:
Os resistores de potência esquentam muito e a parte de trás da caixa fica bem quente quando ligado. Testei o rádio apenas com gerador de funções, pois não consegui sintonizar nenhuma rádio de manhã. O ideal era ter feito o teste a noite.
Por baixo do chassis:
Aquele capacitor eletrolítico amarelo aparentemente não está no esquema e não consegui ver a sua função. A foto é de antes da modificação na chave de onda.
Correndo atrás do canal, segue o vídeo de testes e desmontagem de um ferro de solda Tooltop T65-SP:
O vídeo recebeu vários comentários falando que o problema de não negociar a tensão poderia ser do cabo. Testei outros cabos nesta mesma foto de bancada do vídeo (que a principio chega a 24V x 8A) e o problema continua. Até com um power bank que sabidamente tem negociação de tensão também não funcionou. Este power bank usa o CI SW6106 que vai até 12V e não conseguiu negociar nem os 9V.
Com uma fonte de notebook de 65W USB C o ferro funcionou normalmente. Podemos dizer então que o problema é na minha fonte de bancada e no power bank? Então, já testei aqui outro ferro de solda, o GVDA GD 300 e funcionou normalmente.
Aqui a placa do ferro de solda:
Deste lado tem os botões e o LCD que é bem pequeno. Gostei do conector de alimentação diferentão.
A placa do outro lado:
O primeiro CI de 10 pinos é um CH224K, negociador de tensão USB. Seguido por um conversor DC/DC XL1509. O microcontrolador é um 32F030F6P6 e o MOSFET um NCE40P40K de 40A.
Ainda devo usar este ferro no vídeo do testador USB C que mostrei nos testes para tentar entender onde está o problema.
Mais um dia, mais um multímetro. Desta vez um Mustool MT8210Pro, com osciloscópio digital. Segue o vídeo do review:
O multímetro por dentro:
Aí vemos que os fusíveis são SMD e pra trocar pode dar um pouco de trabalho. O microcontrolador é um ARM STM32F400. O CI do multímetro mesmo está sem identificação, mas deve ser da mesma leva dos multímetros de 6000 contagens que já testei aqui. As configurações são salvas em uma EEPROM 24C02 e uma 24C256. O ADC do osciloscópio é um MS9280 (10 bits x 35 MSPS).
Do lado de baixo só o LCD, a chave e botões impressos e o shunt de 10A:
Pra fechar, a foto da posição dos contatos da chave rotativa:
Daí chegou este som aqui pra consertar e fiz o seguinte vídeo:
O primeiro problema é clássico neste aparelho, onde o transistor de proteção de sobretensão apresenta fuga de corrente acionando a proteção depois de alguns segundos. Trocado o transistor (BC847) o aparelho passou a ligar e manter assim. É um problema comum em aparelhos de som da philips que usam este mesmo circuito.
Já o segundo problema é de não sair som nas caixas, somente nos fones de ouvido. Outro problema clássico onde o conector de fones tem também a função de chave que é acionada e indica ao microcontrolador para dar mute na saída. O conector é meio chato de encontrar, mas dá pra usar um equivalente no Aliexpress (Part number PJ-306-22A5K). Há pequenas diferenças mas dá pra colocar ele no lugar do antigo. Aqui uma foto do defeituoso:
Fiz uma checagem no conector e realmente a chave (a parte de trás ali na foto, verde) só ficava em uma posição, não voltando a posição normal. Para isso tive que abrir o conector todo e destruir o mesmo no processo. Não sei se é possível abrir sem danificar, pelo menos não consegui, então só trocando mesmo.
Mais um multímetro recebido para review. Desta vez um Aneng AL01 com escala de medida de indutância. Segue o vídeo:
Agora as fotos, começando pela placa no lado dos componentes:
O multímetro todo é feito com um CI somente, um SD78P953. O problema maior que vejo aí são os minúsculos fusíveis, modelo difícil de encontrar caso queime algum. Do outro lado da placa só o display, os botões e a chave rotativa impressa:
E pra fechar, uma foto dos contatos das chaves. Ainda me impressiono com a quantidade de pessoas que me perguntam a posição destes contatos em vários posts de multímetros. É muito comum alguém desmontar o multímetro e perder essas posições.
Daí eu recebi este capacimetro de um seguidor do canal e fiz o vídeo da tentativa de conserto:
O problema era que a escala de 2000 pF não estava funcionando. Abrindo o aparelho notei que uma das trilhas da chave de seleção tinha sido refeita. Retirei a modificação, passei uma fita adesiva de cobre e estanhei e a escala voltou a funcionar. Como não é bom usar um equipamento de testes nestas com a trilha refeita o conserto foi só por curiosidade mesmo.
A placa do aparelho é bem parecida com a maioria dos capacimetros com ICL7106 comuns. Este circuito tem algumas coisas diferentes no divisor, mas são quase os mesmos CIs:
Mais um conserto, desta vez uma airfryer Mondial modelo AF-30. Olha o vídeo:
A airfryer não ligava e não esquentava. O primeiro problema era o fusível térmico aberto, trocado o componente o aparelho voltou a ligar mas sem controle da temperatura. Neste caso era o termostato que não estava funcionando. Poderia ser o sensor de temperatura ou o controlador mesmo. Na dúvida troca-se o conjunto termostato com sensor. Feito isso o aparelho voltou a funcionar normalmente. O termostato novo já instalado: